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SAR Observation of Ocean Winds

• How does a SAR image the ocean surface
• How are ocean winds estimated from SAR 

imagery
• Radar cross section models needed to estimate 

ocean winds
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Bragg Scattering

When the radar wavelength, λ, 
projected onto the surface 
matches a periodic structure on 
the surface, there is a resonance 
effect causing a strong backscatter
=> bragg scattering

(copied from Frank Monaldo, APL)
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θI = radar incidence angle
θI’ = local incidence angle of surface
S(k,Φ) = spectrum of surface
k = radar wavenumber = 2π/λ
Φ = look direction of the radar
R = reflectivity constant (depends on dielectric constant, θI)



Bragg Scattering (cont.)

• σo is proportional to the amplitude of the 
“bragg wave” (the wave on the surface that 
matches the bragg condition) only
– this is the only surface structure the radar “sees”

• Radar only “sees” the bragg waves that are 
moving toward or away from the sensor 
(moving in the Φ direction)

• A local tilting of the surface changes the local 
incidence angle θI’ and thus changes the wave 
on the surface that matches the bragg condition



SAR Ocean Imaging
• For SAR incidence angles between 20 and 60 

degrees, bragg scattering is the dominant 
backscatter mechanism
– for angles less than 20 degrees, specular scattering 

becomes dominant

– for angles greater than 60 degrees, no standard 
theory applies, but surface shape seems to become 
important
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Ro = reflectivity for specular surface
σh

2 = small-scale height variance
p = probability of a specular surface, θi’ = tan(θI)



Ocean Surface

Facets
Bragg Wave

~3λ

SAR Ocean Imaging (cont.)

Two-Scale Model
Model the ocean surface as a set of flat facets. Each facet is ~3λ in 
length.  The radar cross section from each facet is determined by 

bragg scattering => determined by the amplitude of the bragg 
waves within the facet and the local tilt of the facet caused by

large-scale waves



Ocean Surface

Facets
Bragg Wave

~3λ

SAR Ocean Imaging (cont.)
Bragg waves are created by the local wind then propagate along 
the surface

=> amplitudes are determined by local wind conditions
and ocean surface currents they encounter

Facet tilts are caused by the amplitudes of the long-scale waves
=> determined by local winds, swell 



SAR Ocean Imaging (cont.)

• SAR imaging of large-scale ocean structures 
(waves, fronts, surfactants, etc.) is always an 
indirect effect
– SAR only sees the effect that the large-scale 

structures have on the bragg waves

• Ocean surface is always moving which causes 
image smearing
– azimuth resolution of a SAR image of the ocean is 

(R/V)σv where σv is the standard deviation of bragg 
scatterer velocities within a facet ( σv ~ 0.2 to 0.4, 
R/V for an airplane ~ 50 - 80, R/V for a satellite ~ 
110 - 150)



Ocean wave wavenumber
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Wave Height Spectrum

Bragg wave for radar incidence angle

Bragg wave for facet tilted toward the 
radar (larger amplitude)

Bragg wave for facet tilted away 
from the radar (smaller amplitude)

SAR Ocean Imaging (cont.)

Tilting the facet changes the amplitude of the bragg wave because 
the wave height spectrum is not flat around the bragg wave 
location => knowing the spectrum in this bragg region is very 
important to SAR ocean imaging (models range from k-4 to k-8)

Spectrum scales 
as k-p



How Does A SAR Image ...
• large-scale waves

– orbital velocities induce currents on the surface that affect the bragg wave 
amplitudes, local surface slope tilts the local facets

• current fronts
– bragg wave amplitudes are affected as they cross the current front, bragg 

waves are refracted

• oil spills, surfactents
– dampens the ocean surface, removing all bragg waves => no backscatter

• local wind
– wind speed/direction changes bragg wave amplitude

• internal waves
– wave propagation caused modulation of surface currents, the bragg waves 

pass through these currents and change their amplitudes

• bathymetry
– flow over the bathemetric feature (usually tidal flow) causes modulation of 

surface currents, the bragg waves pass through these currents and change 
their amplitudes

• atmospheric conditions
– local changes in wind speed/direction change bragg wave amplitudes



Current
fronts

Surface 
wind field

Rain 
cells

Oil 
spills

Severe 
storms

Atmosphere 
convective cells

Example SAR Signatures From Various Events



SAR Observation of Ocean Winds
Based on two-scale Bragg scattering, 
σo from wind generated waves will 
depend on:
(1) wind speed 
faster wind => higher σo

(2) wind direction
Higher σo when looking into/away from the 
wind, lower when looking cross wind
(3) local incidence angle
Higher σo for high incidence angle

=> can develop a RCS model σo=f(u,φwind,θi)
(u = wind speed, φwind = wind direction with respect to the SAR look 
direction, θi = incidence angle)
Models have been developed for C-VV (CMOD4), but no 
standard model exists for C-HH 



Wind 
Direction

σo

Inverse Radar 
Cross Section 
(RCS) Model

Wind 
Speed

SAR 
Image

Model

Estimating Ocean Winds From SAR Imagery

AKDEMO needed to develop the C-HH 
RADARSAT RCS model to perform the inversion

Find the value of u such that 
σo=f(u,φwind,θi)

•Modifications of CMOD4 C-VV model
•New model for C-HH
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(1) Two Scale Model

(2) Empirical Scaling Model

(3) Bragg Scaling Model

C-HH RCS Models Examined



Radarsat C-HH RCS vs. Models
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Wind Vector Products Presentation

• Description of wind vector algorithm
• Example image products
• Algorithm performance
• Future Work
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Estimating Ocean Winds From SAR Imagery
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Change the wind speed 
until the model RCS 
matches the RCS in the 
image



Estimating Wind Direction From SAR
Region to use to estimate a wind vector

Region to use to generate a spectrum 
from the image

Form a smoothed spectrum by 
calculating a spectrum over 

multiple placements of the smaller 
region, then averaging the spectra 

Calculate the elongation direction 
of the spectral energy over large 

scales (3 - 20 km), wind direction is 
rotated 90 degrees from this 

direction
(red=estimate, white=actual)



Estimating Wind Direction From SAR 
(cont.)

• Wind direction estimates have a 180 degree 
ambiguity

• Direction of large-scale spectrum elongation is 
estimated by fitting a quadratic polynomial to 
the low wavenumber portion of the spectrum

• Land is masked out using a coastline map
– 2 km uncertainty is added for registration errors

• Smooth wind directions using a 3x3 weighted 
average with the RCS values as the weights



Final Wind Algorithm Products

• Combine wind direction estimate with 
averaged RCS to generate wind speed

• Generate an ascii file of latitude / longitude 
locations with wind speed and direction
– remember 180 deg ambiguity with wind direction

• Generate a graphic of the RADARSAT image 
with wind vectors superimposed over the image
– vectors have no “head” due to ambiguity







Estimating Wind Algorithm Performance

• Series of RADARSAT imagery was collected 
off the east coast of the U.S. containing NOAA 
buoys

• Wind speed, direction from the buoys were 
used as ground truth

• Nearest estimated wind vector from the image 
was used to compare to the buoy data

• In following images, white lines are estimated 
vectors, red lines are buoy-derived vectors













Polynomial Algorithm Results
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Polynomial Algorithm Results Limited by Ratio of Quadratic 
Coefficients
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Empirical Scaling RCS Model With Wind Direction Smoothing
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Empirical Scaling RCS Model with Smoothed Wind Directions
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Wind Algorithm Performance

• Wind direction errors:
– over the entire data set: RMSE = 41 degs
– after checking for adequate ratio of quadratic 

coefficients: RMSE = 36 degs
– after applying spatial smoothing: RMSE = 32 degs

• Wind speed errors:
– RMSE = 4.0 m/s without mean bias removed
– RMSE = 1.6 m/s with mean bias removed



Wind Algorithm Future Work

• More robust metric for when to believe 
direction estimate from the SAR image
– procedure to replace the direction from surrounding 

estimates or model outputs

• Merging of the two algorithms from the two 
contractors into a single AKDEMO algorithm
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Vessel Detection Products Presentation

• Description of automated detection algorithm
• Example graphical products
• Algorithm performance estimation
• Future work



Buffer 
Window

Background 
Window

Signal 
Window

Used to calculate ms
Used to calculate mb, σb

Nested Windows Used in the Ship Detection Algorithm

For each placement of 
the set of local windows, 
calculate a detection 
statistic, d: 

d = 
(ms-mb)

σb

d is a CFAR statistic: 
constant false alarm 
rate



Vessel Detection Algorithm

SAR Image For each placement of the local 
windows, a vessel is detected if:
d > To = 5.5 in water regions

= 12 in noise regions 
ms > mo = .03
mb < m1 (varies for each image)
σb < σ1 = 0.003 (near land)

Detections are ignored if there are more than 2 km 
from water, but kept if they are within 2 km of shore 
in order to handle possible registration errors.



Vessel Detection Algorithm
• Statistics are calculated using a “fast” 

algorithm that just continually adds and 
subtracts from sums over window samples

• Approach allows a Wide Swath ScanSAR 
image to be processed in approximately 10 
minutes of elapsed time.

• Output products:
– ascii file of ship locations (latitude,longitude) and 

ancillary information
– graphical product of ship locations superimposed on 

RADARSAT image



Example 
Vessel 
Detection 
Product

Green is a 
confident 
detection, red is a 
less confident 
detection.
Triangles are in 
the water, squares 
are within 2 km of 
shore.
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Vessel 
Detection 
Product
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Ship Detection Algorithm Performance 
Estimation

• A series of 30 RADARSAT images were 
manually analyzed to determine false alarm 
rates and obvious missed detections

• An image with a known number of ships was 
analyzed to determine the number of missed 
detections and estimate the smallest ship 
detected

• Images that contained individual ships with 
known lengths and locations were analyzed



Ship detection 
results for a fishing 
fleet.  Detections 
are shown above 
the white triangles.
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Vessel Detection Algorithm Performance

• A RADARSAT image was collected during the 
Red King Crab Fishery in Bristol Bay

• The fishery had a known number of ships with 
a known distribution of ship lengths

• There were no ships in the waters outside of the 
fishery

• Detections outside of the fishery were used to 
estimate the false alarm rate, which was then 
used to remove detections within the fishery 
that represented false alarms
– assumes same false alarm rate throughout the image



Red King 
Crab 
Fishery
Image
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Estimating The Smallest Detectable Ship

• Assume that the larger the ship, the larger its 
RCS, and thus the more detectable

• The number of ships that are detected then 
represent the longest ships in the scene

• Using the known distribution of ship lengths, 
find the length cut-off for the number of ships 
detected
– after removing the estimated number of false alarms



Estimating The Smallest Detectable Ship

• For low resolution (100m sample spacing) 
imagery
– ships detected > 35 meters in length (0.01% FAR)
– appears to be limited by sample spacing (false alarm 

rate is still low when number of detections plateaus)

• For high resolution (50m sample spacing) 
imagery
– almost all the ships can be detected, but with 

unacceptable false alarm rates
– for reasonable false alarm rates, ships detected > 32 

meters in length (0.002% FAR)
– limited by false alarm rate, not sample spacing



Vessel Detection Algorithm Performance

• For a small number of ships (6), their locations 
were known at specific times

• RADARSAT images were located that should 
contain the ships and processed with the 
detection algorithm

• Results were put into three bins:
– detection => ship location very near a detection
– possible detection => ship location close to a 

detection
– missed detection => no ship detection nearby the 

ship location



Example of a detection: 
nested white squares 
show reported ship 
location.  White 
triangles represent 
“sure” detections, black 
triangles are “maybe” 
detections



Example of a 
missed 
detection



Possible 
Detection

Detection



Ship Length
(meters)

Possible
Number of
Detections

Number of
Detections

Number of
Possible

Detections

Number of
Missed

Detections
55 4 4 0 0
55 2 1 1 0
49 2 2 0 0
47 3 1 1 1
41 1 0 0 1
32 1 0 0 1

Results for Individual Ships

=> ships detected if length > 41 meters



Summary of Vessel Detection Algorithm 
Performance

• Low Resolution Images (100 meter sample 
spacing)
– Vessels detected if length > 35-41 meters

• limited by sample spacing
– False Alarm Rate (FAR) 0.02% per detection 

attempt

• High Resolution Images (50 meter sample 
spacing)
– Vessel detected if length > 32 meters

• limited by FAR
– FAR = 0.002% per detection attempt



Future Work For Vessel Detection 
Algorithm

• Incorporate approach that will allow the signal 
box to vary in size to handle large and small 
ships simultaneously
– use a large number of nested boxes, pick the 

signal/background pair that maximize d

• Ice in the image causes a significant number of 
false alarms
– develop an automated algorithm for detecting ice
– need to separate types of ice in order to still locate 

vessels within ice “fingers”



Example 
product for 
automated ice 
classification:

green = land

red = ice

yellow = ice 
fingers

blue = water
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